2x^2-20=(x+4)(x-4)

Simple and best practice solution for 2x^2-20=(x+4)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-20=(x+4)(x-4) equation:



2x^2-20=(x+4)(x-4)
We move all terms to the left:
2x^2-20-((x+4)(x-4))=0
We use the square of the difference formula
2x^2+x^2+16-20=0
We add all the numbers together, and all the variables
3x^2-4=0
a = 3; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·3·(-4)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*3}=\frac{0-4\sqrt{3}}{6} =-\frac{4\sqrt{3}}{6} =-\frac{2\sqrt{3}}{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*3}=\frac{0+4\sqrt{3}}{6} =\frac{4\sqrt{3}}{6} =\frac{2\sqrt{3}}{3} $

See similar equations:

| 6/5+4/5=37/15+7/3x+1/3 | | 42x/5=21 | | (3x+12)=6x | | (2x+2/5)=9 | | 7x/3=189 | | 9(x+5)=8x+3 | | 1572x-40x=542 | | X²+4x+13=0 | | 8(x-3)=6x=18 | | -168-6r=18r-39(r+12) | | -5y+2.3=18.8 | | 1/2x+7/4x=9 | | 6+3x=10+x+6 | | 8=5+x/3 | | 8=4(y-7)-8y | | 0.08x+18.00=35.72 | | 0.08x+35.72x=x | | x=35.72+0.08x | | *3x+2=20 | | 2w^2+57w-90=0 | | 0.08x+x=35.72 | | 3t^2+18t+9=0 | | 5x-2x=20 | | 3q-16q=7+2(-6 | | (14x^2*x^2)^1/2=0 | | 6(1/3x-1)+x=3 | | 2x-45+x+5=180 | | 3/5+4/5x=10 | | X/14+7x/6=x/8 | | X+x+7+7=40 | | 3x^=-12 | | 8x+9=6x+2 |

Equations solver categories